If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-23x=23
We move all terms to the left:
x^2-23x-(23)=0
a = 1; b = -23; c = -23;
Δ = b2-4ac
Δ = -232-4·1·(-23)
Δ = 621
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{621}=\sqrt{9*69}=\sqrt{9}*\sqrt{69}=3\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-3\sqrt{69}}{2*1}=\frac{23-3\sqrt{69}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+3\sqrt{69}}{2*1}=\frac{23+3\sqrt{69}}{2} $
| 4t-1=5t+30 | | (4x-4)+(3x-2)+(2x+6)=180 | | 9x-2x=-1 | | (4x-4)+(3x-2)+2x+6)=180 | | 10x-2(x+5)=4x-2 | | 4x+23=-15 | | 5n-5=9+10 | | 3(x-1)=2(3-x) | | (x^2-4)^2+(x^2-4)-6=0 | | 15=p/188.4 | | 12x-4=-10x+8 | | 2x+3(x-1)=3x+11 | | 3/4+1/4/x=-3 | | 3x+4(x+1)=x+2(x+3) | | 3^x+3-3=78 | | 2x-8+20=180 | | 3y/2-6=12 | | -15=2n+12 | | 3x+28=11.8 | | X×y=37 | | -2(2x=3)=-4(x=1)-2 | | 5n-16=9+20 | | 63=-5+2n-2 | | 3√2x-1=6√x+1 | | x-5=1/2(x+8) | | 14^7x=15^-x+10 | | x2+18x+32=0 | | 43+x+(x-1)=180 | | 8x^2+38x+55=0 | | 9v-6=3(v+4) | | (4x-1)²=196 | | 3y+5=2y+20 |